Overview of Bosch DC Microgrid System

Conventional AC System

- 7-10% increase in PV utilization
- 6-8% increase in round trip efficiency from energy storage
- Reduced impact of grid outages
- Higher reliability
- Greater reduction in GHG emissions
- Energy storage used for peak shaving, demand reduction, and energy management

Bosch DC System

Bosch DC Microgrid Configuration (Non-Export)

Load Impact of Bosch DC Microgrid System

- Converting certain AC loads to be more efficient DC loads
- Power Server capacity sized no larger than total converted DC loads

- Building load created by DC microgrid is limited by Power Server capacity
- Net load is decreased during peak hours
 - DC Loads powered by PV during peak hours
 - Energy storage configured to only be charged by the PV system during peak hours
 - No facility upgrades required
- Example:
 - Existing AC Load to be converted= 100 kW Converted DC Load = 90 kW
 - Power Server Capacity = 90 kW
 - Energy Storage Capacity = 120 kW
 - Maximum DC microgrid system load at anytime = 90 kW

Bosch Storage Load Proposal

- Interconnection approval should not be required for BTM/NE* Storage where export is a physical impossibility
 - Technical review is unnecessary
- Rule 21 should not impose new review burdens or costs on storage projects that would not otherwise apply
 - Determine the minimum threshold for applying storage load review
- Rule 21 storage load review should not apply to charging solely from BTM generation sources
 - Clearly distinguish between charging from the grid and charging from BTM generation sources

Details of Bosch Power Server

VOLTAGE PROTECTION DIODE

- Includes rectifier circuits that only allow one way flow (AC DC) using diodes
- Additional protection in place to ensure no reverse current to flow

